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Abstract
Dissipation can sometimes be described by a non-Hermitian Hamiltonian H ,
whose left and right eigenvectors {f j , fj } form a bi-orthogonal basis (BB). For
waves in a class of open systems, this is known to lead to exact, complete BB
expansions if 〈f j |fj 〉 �= 0 for all j . If not, normalization seems impossible
and many familiar formulae fail; examples are given. The problem is related
to the merging of eigenmodes, so that H can only be diagonalized to Jordan
blocks. The resolution involves a generalized BB containing extra vectors,
whose dynamics are modified by polynomials in the time t . The splitting of
merged modes under a perturbation is also treated. One thus obtains a non-
trivial extension of the BB formalism for open systems.

PACS numbers: 03.50.-z, 02.30.Mv, 02.30.Jr

1. Introduction

For conservative, linear systems, governed by a Hermitian Hamiltonian, the crucial feature in
their analysis is the existence of a complete spectrum. For spatially confined systems, the latter
takes the form of a discrete set of orthogonal eigenfunctions. In terms of these, any function
can be expanded by projection, effectively solving the time-evolution problem.

However, many physical systems, while still having their states in a Hilbert space with
inner product 〈·|·〉, are naturally described by a non-Hermitian Hamiltonian (NHH) H [1].
At least in the finite-dimensional case, it then follows from the characteristic polynomial
that the left (H †f j = ω∗

jf
j ) and right (Hfj = ωjfj ) eigenvalues still coincide, but the

corresponding eigenvectors need not. One may formalize the latter’s 1–1 correspondence
by introducing a duality map Dfj = f j , extended to the span of {fj } by antilinearity
D(αχ + βψ) = α∗Dχ + β∗Dψ. Since DHfj = ω∗

jf
j = H †Dfj , on that span one has

DH = H †D. (1.1)

1 Present address: D-Wave Systems Inc., 320-1985 West Broadway, Vancouver, British Columbia, V6J 4Y3, Canada.
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Instead of the familiar orthogonality of eigenvectors one now has bi-orthogonality
〈f j |fk〉 = 0, j �= k (we need only consider the case that all ωj are different, cf section 3.1).
If 〈f j |fj 〉 �= 0 for all j and if (at least in some subspace) each vector φ has an expansion

φ =
∑
j

ajfj (1.2)

straightforward scalar multiplication leads to the projection formula

aj = 〈f j |φ〉
〈f j |fj 〉 . (1.3)

The {f j , fj } are then said to constitute a bi-orthogonal basis (BB). BBs bring the advantages
of a discrete eigenvector basis to non-Hermitian systems, establishing an analogy to their
conservative counterparts. For instance, the dynamics are solved as

e−iHtφ =
∑
j

aje
−iωj tfj (1.4)

with aj as in (1.3). As such, BBs are used in, e.g., cavity QED [2], chemical bonding [3],
wavelets [4], and solid mechanics [5]. Since (1.4) describes damped behaviour if Imωj < 0,
it is seemingly attractive to simply postulate an NHH as a model for dissipative systems.

Several complications can arise in the use of NHHs and BBs, cf the caveats above. First,
especially in the infinite-dimensional case it is usually hard to establish completeness—the fj
may not span the whole (physically relevant sub-)space. In practice, completeness is often left
as an assumption. Second, the reverse implication from (1.3) to (1.2) need not hold: instead of
converging to a vector different from φ if completeness is violated, the sum over projections∑

j ajfj may diverge altogether even forφ in the span of {fj }. Namely, without orthogonality
the sum’s norm is not bounded by ‖φ‖. The problem cannot be discarded as mathematical
exotics [6]. Third, postulating an NHH can lead to inconsistencies for thermal or quantum
effects. Even when a microscopic derivation [7, 8] does exist, approximations are usually
involved. When those consist of perturbation around a Hermitian theory, one is limited to
weak damping. Fourth, if 〈f j |fj 〉 = 0 for some j , then (1.3) fails. This will be our main
concern. In this case, 〈f j |fk〉 = 0 for all k while f j �= 0, implying that {fk} cannot span
the whole space, so that there is a relation to the completeness issue. Obviously the problem
does not occur in the Hermitian case f j = fj , which also means that one cannot convincingly
study it in a weak-damping approximation.

In view of the above it is particularly gratifying that, at least in one case, the first three
mentioned intricacies are firmly under control. Namely, for a class of one-dimensional open
systems, dissipation occurs by leakage of scalar waves from a finite ‘cavity’ to an infinite
‘outside’; the eigenfunctions are the resonances or quasinormal modes (QNMs), obeying
the outgoing-wave condition (OWC) at the boundary between the two. Starting from the
conservative ‘universe’ of cavity plus outside, one now eliminates the latter exactly to arrive
at an NHH description for the former alone [9]; this is the analogue of, e.g., integrating out
bath variables to derive an effective action [10]. The cavity Green function is fully determined
by its QNM poles in the frequency plane [11]. For simple poles this leads to complete BB
expansions (1.2) and (1.4) [12]. This has also been verified numerically even for substantial
damping2. Due to the firm microscopic footing, both canonical [13] and path-integral [14]
quantization are possible, in their turn enabling the system to be studied at finite temperatures.
For a review, see [15].

2 For a simple model, in [13] it is shown explicitly that even the infinite-damping limit of the QNM expansion is well
behaved.
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Provided that non-trivial examples can be found, these systems thus are uniquely suited to
study also the fourth intricacy—the normalization problem 〈f j |fj 〉 = 0—especially given the
already stipulated connection to the completeness issue. In fact, one can anticipate that this
connection has to do with the merging of modes: suppose fk → fj for two (in generalM � 2)
modes j and k. In the limit, on the one hand one eigenvector is ‘lost’, so H will no longer be
diagonalizable and can be decomposed only into (M ×M) Jordan blocks instead [16]. On the
other hand, 〈f j |fj 〉 → 〈f j |fk〉 = 0 in the same limit of higher-order modes3; this also means
that the phenomenon does not occur in conservative, Hermitian systems and indeed is quite
different from mere level crossing in the latter4. The merging of modes can have spectacular
experimental consequences, exemplified by the diverging laser quantum noise reported in [17].
Here, however, we shall be content to have this as a motivation, and focus on the mathematical
problem. For QNMs, this should take the form of investigating the higher-order poles which
then occur in the Green function.

Therefore, in section 2 we recapitulate the NHH treatment both of the wave equation and
of the closely related Klein–Gordon equation. The QNM expansion is derived, assuming that
the normalization problem does not occur; the associated duality map arises naturally from the
dynamics. Section 3 gives examples of higher-order modes, corresponding to critical damping.
Section 4 investigates the resulting block structure ofH and introduces basis vectors, replacing
the ‘lost’ eigenvectors, in terms of which this structure assumes a simple normal form. The
frequency Green function is still determined by its discrete poles; in section 5 this leads to a
complete BB expansion (1.2), (1.3) even for higher-order modes, this paper’s key result. The
BB is generalized in that it does not only involve eigenvectors, but also the ‘extra’ vectors
spanning the Jordan normal form; hence, the dynamics differs from (1.4). Of course, the
situation can also be handled by considering merging simple modes, but the limit is singular
and requires care. In section 6 we follow the reverse route, developing the perturbation theory
which describes how a higher-order mode is split into simple ones [18]. This completes the
exact BB analysis of our open wave systems by also resolving the fourth delicacy mentioned
above. Section 7 contains some concluding remarks.

2. Waves in open systems

2.1. Wave equation

We consider waves in one dimension described by [9, 11, 12, 15]

[ρ(x)∂2
t − ∂2

x ]φ(x, t) = 0 (2.1)

on the half line [0,∞), with φ(x= 0, t) = 0 and φ(x→∞, t) → 0. Let the system S be
[0, a] and the bath B be (a,∞), with ρ(x >a) = 1. S and B exchange energy only through
x = a. The OWC ∂tφ(x, t) = −∂xφ(x, t) is imposed in B. The model is relevant for
strings [19], electromagnetism [20], and gravity [21]. One must take ρ > 0, both physically
(ρ is a density [19, 21] or a dielectric constant [20]) and mathematically ((2.2) is singular if
ρ(x0) = 0 for some x0). Hence, ρ can contain a (positive) δ-function, but not δ′ or higher (for
which (2.2) would be undefined anyway). Thus, φ has to be continuous, but φ′ need not be.

The eigenfunctions or QNMs are factorized solutions φ(x, t) = fj (x)e−iωj t , with

[∂2
x + ρ(x)ω2

j ]fj (x) = 0 (2.2)

3 If one instead bi-orthonormalizes {fj , f j } �→ {f̄j = αjfj , f̄
j = αjf

j } so that 〈f̄ j |f̄j 〉 = 1, the rescaling thus
is singular near the merging point. The normalization problem then manifests itself in that any other measure of the
‘size’ of f̄j such as 〈f̄j |f̄j 〉 diverges there.
4 Thus, we shall avoid the terminology ‘degeneracy’ in this context.
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and fj (x>a) ∝ eiωj x . In terms of the momentum φ̂ = ρ(x)∂tφ and the vector

φ =
(
φ

φ̂

)
, (2.3)

equation (2.1) assumes the Schrödinger form i∂tφ = Hφ [22], with

H = i

(
0 ρ(x)−1

∂2
x 0

)
. (2.4)

In this two-component form, the eigenvectors are

fj ≡
(
fj

f̂j

)
=
(

fj
−iωjρfj

)
. (2.5)

The Hamiltonian (2.4) is non-Hermitian, as will be obvious once the appropriate inner
product (2.16) is defined. Nevertheless, on the ‘universe’ [0,�] (with a node at x = � → ∞) a
complete real spectrum of ‘universe modes’ is guaranteed to exist. These are given by (2.5) for
±ωj , where fj are the eigenfunctions with eigenvalue ω2

j of −ρ(x)−1∂2
x , which is Hermitian

and positive on the ‘one-component’ space with the product 〈u, v〉 = ∫ �
0 dx ρ(x)u∗(x)v(x).

This indirect construction fails on S = [0, a], however. Indeed, the OWC φ̂(a+) = −φ′(a+)

requires two components, and the QNM frequencies have Imωj < 0.

2.2. Green function and poles

The dynamics is best discussed in terms of the (retarded) Green function, namely

φ(x, t) =
∫ ∞

0
[G(x, y; t)φ̂(y) + ∂tG(x, y; t)ρ(y)φ(y)] dy (2.6)

where φ and φ̂ are the initial values of the field and its conjugate momentum. The behaviour
of G is determined by the complex singularities of G̃(x, y;ω). If (a) ρ(x) has a discontinuity
at x = a demarcating S from its surroundings, and (b) ρ(x>a) = 1 so that outgoing waves
are not scattered back into S, the only contributions will be from the isolated QNM poles [11].
If furthermore all poles are simple, then in S one can represent G as

G(x, y; t) = i
∑
j

fj (x)fj (y)

(fj , fj )
e−iωj t . (2.7)

Note that the numerator goes as fj (x)fj (y), not as e.g. fj (x)f
∗
j (y) (which indeed would

violate the symmetry of G in x and y). Thus, the normalization (fj , fj ), which will turn out
to be the same as 〈f j |fj 〉 and therefore central to the issue at hand, will have to go as f 2

j , not
|f 2
j |—a crucial difference, since QNM wavefunctions in general are not real.

Let us derive (2.7) and hence (fj , fj ) as preparation for section 5. The defining equation

D(ω)G̃(x, y;ω) ≡ [∂2
x + ρ(x)ω2]G̃(x, y;ω) = −δ(x − y) (2.8)

for 0 � x � y � a is solved by

G̃(x, y;ω) = f (x, ω)g(y, ω)

W(ω)
(2.9)

where f and g obey D(ω)f = D(ω)g = 0, with f (x= 0, ω) = 0 and g(x>a, ω) ∝ eiωx .
The WronskianW(ω) = f ′g− fg′ makes (2.9) independent of the normalization of f and g.

One next closes the Fourier-integral contour for G(t) in the lower half ω-plane. Under
the conditions stated, the large semicircle does not contribute and there is no cut caused by
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the tail of ρ [11]; one is left with the residues at the zeros5 ωj of W . (Without the conditions,
there can be non-pole contributions. The QNMs will then be incomplete in a way unrelated to
Jordan blocks, leading to short-time transients and long-time power-law tails (say) [23]. Such
a ‘background’ below the resonances will not be discussed here.)

At ωj , one has fj (x) ≡ f (x, ωj ) = Cjg(x, ωj ). Thus fj satisfies both the left and right
boundary conditions, and is a QNM. Assuming for the moment that ωj is a simple zero, the
residue is related to W ′(ωj ), and it is straightforward to show that

−Cj dW (ωj )

dω
= 2ωj

∫ a+

0
ρ(x)fj (x)

2 dx + ifj (a)
2 ≡ (fj , fj ). (2.10)

The expansion (2.7) for G then follows trivially. In particular, the calculation shows why
(fj , fj ) ∝ f 2

j instead of |f 2
j |. The definition (2.10) of (fj , fj ) is valid for QNMs only, and is

a special case of (2.13); it shows that the normalization problem is the same as the possibility
of higher-order zeros in W , i.e., of merged modes, as was already apparent in section 1.

2.3. Duality

To introduce the duality map, put (2.7) into (2.6), yielding φ(t) as in (1.4) with6

aj = i

(fj , fj )

{∫ a+

0
[fj (y)φ̂(y) + f̂j (y)φ(y)] dy + fj (a)φ(a)

}
. (2.11)

The OWC has ensured that initial data on the outside x > a do not propagate in, enabling their
elimination. We can write (2.11) compactly as

aj = (fj ,φ)

(fj , fj )
(2.12)

(ψ,χ) ≡ i

[ ∫ a+

0
(ψχ̂ + ψ̂χ) dx + ψ(a)χ(a)

]
. (2.13)

The bilinear map (2.13) generalizes (2.10)7. It (i) in the integral cross-multiplies the two
components, and (ii) has no complex conjugation. These suggest a duality operator D = F ,
with F a flip map that (i) swaps the components and (ii) conjugates [24, page 231]

F
(
ψ1

ψ2

)
≡ −i

(
ψ∗

2
ψ∗

1

)
(2.14)

so that F2 = 1I. In terms of F , (2.13) can be related to the standard inner product as

(ψ,χ) = 〈Fψ|χ〉 (2.15)

〈ζ|χ〉 ≡
∫ ∞

0
(ζ ∗χ + ζ̂ ∗χ̂) dx. (2.16)

5 For open systems, the order of the zero of W coincides with the order of the pole in G̃ not only for generic x, y,
but in fact for all x, y > 0. Namely, a node f (x0, ωj ) = 0 or g(x0, ωj ) ∝ f (x0, ωj ) = 0 would imply zero energy
current at position x0, incompatible with the dissipative nature of the QNMs. This is also relevant in section 5.
6 In [12], convergence of the QNM expansion is proved for continuous φ′′ and (φ̂/ρ)′; for discontinuous φ the terms
need not even tend to zero. Thus, if φ is taken in, e.g., L2 (all square-integrable vectors), {fj , f j } is not a BB in
the mathematical sense but a spanning bi-orthogonal system—one which cannot be enlarged because it already spans
the whole space. For non-orthogonal systems, bases and spanning sets must be distinguished even in Hilbert space.
Hence, expansions such as (1.2), (1.3) at t = 0 and (1.4) for t � 0 in fact are valid only in the subspace of smooth
functions; this suffices for our Jordan-block analysis. For further information see [25]. Other subtleties, like the
surface term in (2.13) seeming ill-defined for functions known only up to L2 equivalence, or the spatially divergent
fj having infinite norm under (2.16), are also resolved there to complete satisfaction.
7 In some of our earlier papers, the bilinear map is called a generalized inner product or norm, and sometimes the
notation 〈ψ |χ〉 is adopted for it.
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Hence, (2.11) is of the form (1.3) for f j = Ffj . The OWC collapses
∫∞
a

dx in (2.16) to
the surface term of (2.13), proving (2.15). That is, (2.15) only holds when either χ and Fζ,
or Fχ and ζ, are both outgoing, and only then will the product (2.16) be used. Thus, χ and
ζ in general belong to different spaces. Since this is unrelated to higher-order poles, these
functional-analytic aspects will be dealt with separately [25]. The maps D and F are unequal
for higher-order poles; however, (2.14) defines F in general, cf (5.7).

The property (1.1) is equivalent to the symmetry of H under the bilinear map

(ψ, Hχ) = (Hψ,χ). (2.17)

To verify (2.17), integrate by parts; the surface term generated cancels the one in (2.13). By
an immediate transcription of the standard proof, one now obtains ‘orthogonality’

(fj , fk) = 0 j �= k. (2.18)

What remains is to show that higher-order zeros in W can indeed exist (section 3), and to
generalize the above formalism to those cases (sections 4–6).

2.4. Klein–Gordon equation

Also of interest in this context is the Klein–Gordon equation describing, inter alia, the
propagation of linearized gravitational waves on a curved black-hole background [26]

[∂2
t − ∂2

x + V (x)]φ(x, t) = 0. (2.19)

Essentially the same formalism applies, mutatis mutandis [27]. The discontinuity
condition (a) now refers to V , and the no-tail condition (b) reads V (x>a) = 0. Elsewhere we
replace ρ �→ 1, −∂2

x �→ −∂2
x + V (x). An example in terms of (2.19) will be given below.

3. Higher-order poles

3.1. General remarks

For one-dimensional conservative systems, e.g. (2.2) with nodes at x = 0 and a, W can only
have simple zeros since in (2.10) the surface term is now absent, while the integral is positive
definite up to an overall phase. Thus, their eigenfrequencies have a finite spacing'ω, and can
be labelled by the number of nodes of the corresponding eigenfunctions. Hence, it is by no
means obvious that higher-order poles can exist in the case of outgoing waves. Therefore, we
will give some examples (cf [28]) before studying the extension of the BB formalism.

Any pole of order M > 1, when suitably perturbed, splits into M first-order ones, as
shown explicitly in section 6. The coalescence of poles contemplated in section 1 thus is
generic, as is the ‘loss’ of modes: when simple poles merge, there is only one eigenfunction
left—in contrast to the case of degeneracies in conservative systems. Namely, for a given ω,
the conditions f (x= 0, ω) = 0 and f ′(x= 0, ω) = 1, say, uniquely specify f . The M − 1
‘missing’ modes make the possibility of higher-order poles all the more interesting.

For simplicity, here we concentrate on second-order poles. Proving the existence of third-
order poles and discussing other possibilities is deferred to appendix A. It is best to look for
double poles on the imaginary axis in theω-plane. First, apart from some overall factors of i, the
problem then is purely real and easy to handle. More physically, as the system parameter(s) are
tuned, it is ‘unlikely’ that two poles in the complex plane would collide—not only would this
require simultaneously tuning two parameters, but one also expects level repulsion8. However,

8 QNM time-independent perturbation theory is analogous to the conservative case [12]. Generically it leads to level
repulsion in one direction in the ω-plane, and attraction in the other. The trajectories of two modes would then be like
a pair of hyperbolas which come close without touching; cf the examples for absorptive systems in [11].
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QNMs of the dissipative system (2.1) exist in pairs, with frequencies ω and −ω∗ lying on the
same horizontal line. It would require the tuning of only one parameter to make them collide,
which they must do on the imaginary axis. In fact, we expect that after they collide, the two
poles will move apart along this axis, in exact analogy to an oscillator going through critical
damping. This scenario is exemplified in both models shown below, and it remains an open
question whether higher-order poles can exist off the imaginary axis for our class of open
systems.

3.2. Example in the wave equation

With these remarks, we look for a double zero ofW for the wave equation at ω = −iγ , γ > 0.
The differential equation (suppressing the mode index9 j ) then becomes real

[∂2
x − ρ(x)γ 2]f (x) = 0 (3.1)

and the eigenvalue condition is f ′/f = γ at x = a+, which ensures that W(−iγ ) = 0. For ω
to be a double zero, we also need (f , f) ∝ W ′(−iγ ) to vanish

i(f , f) = 2γ
∫ a+

0
ρ(x)f (x)2 dx − f (a)2 = 0. (3.2)

Using (3.1) to express ρ(x)f (x) in terms of f ′′ and then integrating by parts, this becomes

i(f , f) = − 2

γ

∫ a

0
f ′2 dx + f (a)2 = 0. (3.3)

The last term has been reversed by the surface term −2f (a)2 from the integration by parts.
Interestingly, ρ does not appear in (3.3), and this is central to the following construction.

(i) Choose any function f satisfying f (x= 0) = 0, f ′(x= 0) > 0, and f ′′ > 0.
(ii) Use (3.3) to determine γ .

(iii) Put these back into (3.1) to find ρ, which is guaranteed to be positive.

There is, however, one further subtlety. Such a construction gives f ′(a−), and also
f ′(a+) = γf (a); the difference between the two must be attributed, through (3.1), to
ρ(x) = · · · +µδ(x− a), with µ = γ−1 − f ′(a−)/(γ 2f (a)). One must check that µ � 0, i.e.,
that

2
∫ a

0
f ′2 dx � f (a)f ′(a−). (3.4)

This condition is non-trivial, and for instance violated for some α if f (x) = x + αxn, n � 5.
Yet examples abound, e.g.

f (x<1) = sinh(Kx) (3.5a)

γ = KcotanhK +
K2

sinh2 K
(3.5b)

ρ(x) = K2

γ 2
θ(1 − x) +

K2

γ 2 sinh2 K
δ(x − 1) + θ(x − 1) (3.5c)

(so that a = 1), for any K > 0. Note that always ρ(0<x<1) = K2/γ 2 < 1, the case in
which there is a zero-mode even if the δ-term in (3.5c) is absent [12, 13]. Incidentally, this
case without the δ-term thus already shows that the open string (2.1) can exhibit features not
found in damped harmonic oscillators, as will become even clearer in appendix A.

9 Following our conventions in previous papers [12, 13], QNMs on the negative imaginary ω-axis will be termed
zero-modes and labelled with j = 0 if necessary.



2614 A Maassen van den Brink and K Young

3.3. Example in the Klein–Gordon equation

We next give an example for the Klein–Gordon equation, which may appear more natural in
that the system (i.e., V (x)) is specified in advance and not obtained as an answer.

Recall the Pöschl–Teller potential [29]

V (x) = V sech2x. (3.6)

The model is exactly soluble, with the eigenvalues given by10

ω±
j =




±
√

V − 1
4 − i(j + 1

2 ) if V � 1
4

−i

[
j + 1

2 ±
√

1
4 − V

]
if V � 1

4

(3.7)

j = 0, 1, 2, . . . . Each pair of poles merge at V = 1
4 , where the damping becomes critical.

This example is slightly unsatisfactory in one way: V has no discontinuity but does have
a tail (i.e., it does not vanish outside some finite interval), so the QNMs would not be complete
even when all poles are first order. We may consider a minor alteration: if V (|x|>a) �→ 0
for some large a, one would expect the ω±

j to be little changed. Actually this is not true in
general [30], but this subtlety is not related to the present issue. Here it suffices that at least the
first mode pair j = 0 are not much affected by truncation, in that the a → ∞ limit recovers
their position for the untruncated V . At critical damping these then demonstrate a double zero
of W in a context where the QNMs are otherwise complete. We have found this double zero
numerically at a = 5, V = 0.252 279 109 . . . , iω = 0.511 109 . . . .

4. Jordan blocks

With the possibility of Mth-order zeros of W (M � 2) established, in this section we focus
on the subspace associated with a single such zero ωj . As mentioned in section 3.1, in this
subspace there is only one eigenvector; presently M − 1 other basis vectors will be obtained.
Thus, this M ×M block in H is not diagonalizable. From now on, we will only discuss the
wave equation (2.1).

Using the definitions below (2.9), the (position-independent) Wronskian can be written as
W(ω) = f ′(0, ω)g(0, ω). One proves by induction that ∂nωg(0, ω)|ωj = 0 for 0 � n � M − 1
(f ′(x= 0) �= 0 since otherwise f (x) ≡ 0). Hence, up to this order in ω−ωj , the functions f
and g satisfy the same boundary conditions and can be normalized to be equal: if we define

f (x, ω) =
M−1∑
n=0

fj,n(x)(ω − ωj)
n + O[(ω − ωj)

M ] (4.1)

so that fj,n(x) ≡ (1/n!)∂nωf (x, ω)|ωj , then we also have

g(x, ω) =
M−1∑
n=0

fj,n(x)(ω − ωj)
n + O[(ω − ωj)

M ]. (4.2)

Now for 0 � n � M − 1 define

fj,n(x, t) ≡ 1

n!
∂nω[f (x, ω)e−iωt ]ωj = 1

n!
∂nω[g(x, ω)e−iωt ]ωj

=
n∑

m=0

fj,n−m(x)
(−it)m

m!
e−iωj t (4.3)

10 Here the Klein–Gordon equation is considered on the full line −∞ < x < ∞ rather than on 0 � x < ∞. Only
trivial changes are required in the formalism; see, e.g., [11, 23, 27].
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where the last line follows using (4.2). These are not only outgoing solutions of the wave
equation (since g(x, ω)e−iωt is for any ω), but have a node at the origin as well (since
f (x, ω)e−iωt has one for any ω). The associated momenta are

f̂j,n(x, t) ≡ ρ(x)ḟj,n(x, t)

= −iρ(x)[ωjfj,n(x, t) + fj,n−1(x, t)] (4.4)

so that the action of the Hamiltonian is Hfj,n = ωjfj,n + fj,n−1, with fj,−1 ≡ 0.
For fixed j , the functions {fj,n(x, t)}M−1

n=0 are linearly independent (in that a non-trivial
superposition cannot vanish identically in x and t), as is obvious by looking at the highest
power of t in each (the coefficient of tne−iωj t in fj,n is ∝ fj (x), which by definition is non-
zero). Therefore the initial data fj,n have to be independent as well11, otherwise one would
have a vanishing superposition evolving into a non-vanishing function.

Thus the set {fj,n}M−1
n=0 is a basis, in which the Hamiltonian reads

H =




ωj 1 0 · · · 0

0 ωj 1 · · · 0

0 0 ωj
. . . 0

...
...

...
. . .

...

0 0 0 · · · ωj



. (4.5)

While it is guaranteed that H can be cast into the so-called Jordan normal form (4.5) in a
subspace with precisely one eigenvector [16], we have now established a basis with respect
to which this is indeed the case, and related this basis to the solutions f (x, ω), g(x, ω).
The basis is not unique, since rescaling f (x, ω) �→ N (ω)f (x, ω) mixes the fj,n, with only
fj = fj,0 remaining invariant up to a prefactor; in fact, this rescaling is readily checked to
generate precisely those basis transformations which leave the form (4.5) for H invariant. A
further—essentially unique—specification of the basis will be made in section 5.

Vectors from different blocks are ‘orthogonal’ under the bilinear map (2.13), i.e.

(fj,n, fk,m) = 0 j �= k. (4.6)

The proof proceeds by induction with respect to n + m. The case n + m = 0 is the standard
one of eigenvectors given in (2.18). Now consider

ωj(fj,n, fk,m) + (fj,n−1, fk,m) = (Hfj,n, fk,m) = (fj,n, Hfk,m)

= ωk(fj,n, fk,m) + (fj,n, fk,m−1). (4.7)

On both sides, the second terms vanish by the induction hypothesis, so one is left with
(ωj − ωk)(fj,n, fk,m) = 0, proving (4.6).

5. Generalized bi-orthogonal expansion

Having obtained the extra non-eigenvector solutions fj,n�1(x, t), we now investigate their role
in the field expansion. We shall consider all poles simultaneously, so that the block size M
acquires an index j . As with the Jordan normal form of H (cf below (4.5)), a basis dual to

11 The fj,n being linearly independent of course does not mean that they are unrelated. In fact, taking
∂ω[D(ω)f (x, ω) = 0] and solving the ensuing D(ωj )fj,1 = −2ωjρfj by variation of the constant, one finds
(for M � 2) fj,1(x) = 2ωjfj (x)

∫
x

dy f−2
j (y)

∫ y
0 dz ρ(z)f 2

j (z), where the undetermined constant of integration
corresponds to the freedom pointed out below (4.5). For M � 3, higher derivatives can be calculated similarly.
However, the expressions in the main text are more transparent if the fj,n are left unevaluated.
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{fj,n}Mj−1
n=0 is known to exist on general grounds (see appendix B), but it remains to find its

explicit form and, if possible, to choose the original basis (still subject to the freedom pointed
out below (4.5)) so that the ensuing expressions are as simple as possible.

Our starting point is (2.6), with G(x, y; t) = ∫
(dω/2π)G̃(x, y;ω)e−iωt and G̃ given

by (2.9). Consider an Mj th-order zero5 of the Wronskian,

W(ω) = Wj,Mj
(ω − ωj)

MjM(ω)

= Wj,Mj
(ω − ωj)

Mj + O[(ω − ωj)
Mj+1] (5.1)

with M(ωj ) = 1. We now use the remaining freedom f �→ Nf , taking N (ω) =
M(ω)−1/2 + O[(ω − ωj)

Mj ] (analytic near ω = ωj ) and similarly for g, preserving (4.2).
One obtains12

W(ω) = Wj,Mj
(ω − ωj)

Mj + O[(ω − ωj)
2Mj ] (5.2)

where we draw attention to the order of the error term. Equation (5.2) will greatly simplify
the formulae below. The contour integral for G is now straightforward, leading to

G(x, y; t) =
∑
j

e−iωj t

iWj,Mj

Mj−1∑
n=0

n∑
m=0

fj,m(y)fj,n−m(x)
(−it)Mj−1−n

(Mj − 1 − n)!
(5.3)

(t � 0 throughout this section). By symmetry, (5.3) also holds for 0 � y < x � a even though
this is not the case for the original (2.9). If Mj = 1 for all j , this agrees with the combination
of (2.7) and (2.10). In general, one can rewrite

G(x, y; t) =
∑
j

1

iWj,Mj

Mj−1∑
n=0

fj,Mj−1−n(y)fj,n(x, t) (5.4)

with fj,n(x, t) defined in (4.3). Insertion into (2.6) yields the time evolution

φ(x, t) = −
∑
j

1

Wj,Mj

Mj−1∑
n=0

(fj,Mj−1−n,φ)fj,n(x, t) (5.5)

in terms of the bilinear map (2.13). In particular, this holds for φ = fk,m. Then, terms with
j �= k vanish by (4.6), and the linear independence of the fk,n(t) discussed above (4.5) implies
that the coefficients on both sides of (5.5) are equal, i.e.

(fj,n, fk,m) = −Wj,Mj
δjkδn+m,Mj−1. (5.6)

Of course, this intra-block ‘orthogonality’ is conditional on the normalization W(n)(ωj ) = 0
forMj + 1 � n � 2Mj − 1, imposed in (5.2); otherwise one has (5.13) below instead. In view
of (2.15), the relation (5.6) leads one to define

f j,n ≡ Dfj,n ≡ Ffj,Mj−1−n (5.7)

where F is the flip operation in (2.14). Thus

〈f j,n|fj ′,n′ 〉 = −Wj,Mj
δjj ′δnn′ (5.8)

where Wj,Mj
�= 0 by definition, cf (5.1), solving the normalization problem. The result (5.8)

is significant; it shows that, unless Mj = 1 for all j , the duality map D no longer coincides
with F in that D changes the intra-block index n of fj,n. Since the flip map obeys

FH = H †F (5.9)

12 One has Wj,Mj +n = ∑n
m=0 f

′
j,n−m(0)gj,Mj +m(0), and for n � Mj − 1 this does not depend on the choice of

gj,Mj +m. Namely, g(x, ω) �→ [1 + (ω − ωj )
Mj N (ω)]g(x, ω) yields gj,Mj +m �→ gj,Mj +m +

∑m
0=0 Nj,m−0gj,0, with

gj,0(0) = 0 since 0 � Mj − 1. Thus (5.2) only depends on the normalization of f and g up to order Mj , as stated in
the main text. Cf (5.13) where, at the expense of a slightly more involved calculation, Wj,n�2Mj−1 is expressed in a
form which manifestly involves only fj,m, gj,m for m � Mj − 1.



Jordan blocks and generalized bi-orthogonal bases: realizations in open wave systems 2617

(the proof outlined below (2.17) does not invoke any assumptions on the block structure ofH )
the relation (1.1) in general is not satisfied by the operator D implicit in (1.3). Since it is an
immediate consequence of (5.9) that F carries right into left eigenvectors and vice versa, the
left eigenvector corresponding to fj = fj,0 is Ffj,0 = f j,Mj−1 �= f j,0 for Mj > 1. While
the left and right eigenvectors thus are orthogonal as stipulated in section 1, this does not lead
to normalization problems as these vectors are not each other’s dual.

Using (5.6) and (5.7), the final results for the generalized BB expansion become

G(x, y; t) = i
∑
j

Mj−1∑
n=0

fj,Mj−1−n(y)fj,n(x, t)
(fj,Mj−1−n , fj,n)

(5.10)

φ(t) =
∑
j

Mj−1∑
n=0

〈f j,n|φ〉
〈f j,n|fj,n〉fj,n(t). (5.11)

The t ↓ 0 limit of G(x, y; t) then yields the sum rule

i
∑
j

Mj−1∑
n=0

fj,Mj−1−n(y)
(fj,Mj−1−n, fj,n)

(
fj,n(x)

f̂j,n(x)

)
=
(

0
δ(x − y)

)
(5.12)

while in the same limit, (5.11) is indeed seen to be of the form (1.2), (1.3).
Equation (5.6) is the generalization of (2.10) and (2.18), while our proof is a slight

simplification even for simple poles [11]. The representation (5.10) generalizes (2.7),
and (5.11) extends (1.4) and (2.12). Also the simple-pole case of (5.12) is already known [11].

One may ask to what extent the basis we have obtained is unique. On the one hand we
demand that the Hamiltonian have the normal form (4.5), and below this equation it has already
been remarked that this forces the functions fj,n to be of the form (4.3) for some normalization
of g(x, ω). On the other hand, to ensure the simplicity of formulae like (5.11), we require that
the dual to fj,n be some Ffj ′,n′ , where (4.6) then forces j ′ = j . Now for any normalization
of f and g (i.e., temporarily abandoning (4.2) and (5.2)) one has

(fj,n, gj,m) = −Wj,n+m+1 (5.13)

as long as n,m � Mj − 1 (implying that the bilinear map vanishes if n+m � Mj − 2), as can
be proved by operating with

∑n
0=0[(n− 0)!(m + 0 + 1)!]−1∂n−0ω ∂m+0+1

ω′ |ω=ω′=ωj on the identity

(ω2 − ω′2)
∫ a+

0
ρf (ω)g(ω′) dx = [iω′f (a, ω)− f ′(a+, ω)]g(a, ω′) + f ′(0, ω)g(0, ω′).

(5.14)

Hence, always (fj,n, fj,Mj−1−n) �= 0, and the only way to bi-orthogonalize by setting other
products to zero as in (5.6) is normalizing W as in (5.2), obviously fixing the fj,n up to one
overall prefactor per Jordan block. Thus, our basis is unique up to these prefactors. In fact,
further analogy to the customary treatment [15] of simple poles results if f (x, ω) is chosen
such thatWj,Mj

= −2ωj for all j , implying (fj,n, fk,m) = 2ωjδjkδn+m,Mj−1. This preferential
normalization (convenient in applications [14]) reduces the freedom to one sign per block.

In closing, let us return to the example of section 3.2 with M = 2. Using either (4.1) or
the integral representation11, one finds the ‘preferred’ second basis function (i.e., the one for
which9 (f0,1, f0,1) = 0) corresponding to f0 = f as in (3.5a) to be

f0,1(x) = fa(x) + fb(x) (5.15a)

fa(x) = i
K

γ
x cosh(Kx) (5.15b)

fb(x) = −i

(
2

3

K

γ
+

1

2K

)
tanhK sinh(Kx). (5.15c)



2618 A Maassen van den Brink and K Young

The conjugate momentum f̂0,1 is given by (4.4). While (5.15) is given here for reference
and further use in section 6, there does not seem to be a simple physical interpretation. The
normalization occurring in the field expansion (5.11) is evaluated as

〈f 0|f0〉 = 〈f 0,1|f0,1〉 = (f0, f0,1) = K3

γ 2
cotanhK. (5.16)

Since the contribution of fb to the product (5.16) is proportional to (f0, f0), it vanishes.
However, in a calculation in section 6.3 this term in f0,1 will be essential for arriving at the
correct result.

6. Jordan-block perturbation theory

6.1. Formalism for the generic case

The use of BBs places dissipative systems into a framework very similar to that for conservative
ones, so that time-independent perturbation theory can be transcribed from textbook results.
Nevertheless, these now apply to complex eigenvalues and shifts [12]13.

Let us investigate how this formalism, previously developed for simple QNM spectra, is
modified if at least one ωj is associated with a non-trivial Jordan block. The ensuing splitting
of the multiple pole intoMj distinct ones (in the generic case, defined below) is reminiscent of
the lifting of a degeneracy by a perturbation (typically breaking some symmetry) in Hermitian
systems; however, important differences exist. First, of the Mj degrees of freedom in the
block, only one is an eigenvector, as emphasized before. Second, for Jordan blocks the
splitting generically is governed by only one complex parameter α; hence, the Mj frequency
shifts are not independent. In fact, all their relative magnitudes and phases are predetermined,
and only the overall values depend on the details of the perturbation through α; cf (6.4). While
this may seem unusual, it actually simplifies the calculation.

While Jordan-block perturbations thus differ essentially from those of degenerate levels
in closed systems, we will study the former by a method also used for the latter: transferring
part of the perturbing NHHH ′ to the unperturbedH0 and treating this part exactly, upon which
the remainder of H ′ can be dealt with using non-degenerate perturbation theory.

Specifically, let H = H0 + λH ′, where H0 is assumed to have a known Jordan normal
form as described in sections 4 and 5, H ′ accounts for a change in density δ(ρ−1), and where
|λ| � 1. For simplicity, it is supposed that there is only one Mj � 2; the generalization to
several Jordan blocks is immediate. Consider the splitting part of H ′

H ′
sφ ≡ fj,Mj−1〈f j,Mj−1|H ′fj 〉〈f j |φ〉

〈f j,Mj−1|fj,Mj−1〉〈f j |fj 〉 . (6.1)

This has only one non-vanishing matrix element, namely

α ≡ 〈f j,Mj−1|H ′fj 〉
〈f j,Mj−1|fj,Mj−1〉 = (fj , H

′fj )
(fj,Mj−1, fj )

(6.2)

= ω2
j

∫ a+

0 δ(ρ−1)ρ2f 2
j dx

(fj,Mj−1, fj )
. (6.3)

We transfer this part to the unperturbed Hamiltonian: H̃0 ≡ H0 + λH ′
s , so that the remainder

is H̃ ′ = H ′ − H ′
s . The perturbation is said to be generic iff α �= 0. This definition will be

13 In [12], the duality transformation is not explicitly mentioned. Rather, bilinear maps (ψ,χ) are used; these can be
cast into the BB language by (2.15).
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justified below, by showing that H̃ ′ effects only a higher-order correction in λ compared to the
splitting caused by α �= 0. First of all, however, note that for an infinitesimal δρ, (6.3) implies
α ∝ ∫ a+

0 δρf 2
j dx. Using this and the variation-of-constant method (cf the inner integrand in

footnote 11), α �= 0 is seen to be equivalent to ∂λg(0, ωj ) ∝ ∂λW(ωj ) �= 0. In other words, if
α �= 0 the Mj th-order zero in the Wronskian is split already in the lowest order.

In theMj×Mj block associated withωj , one finds det(H̃0−ω1I) = (ωj−ω)Mj −(−)Mj λα

for the characteristic polynomial. This yields the eigenfrequencies of H̃0 as

ω̃
(n)
j = ωj + se2πni/Mj (6.4)

(0 � n � Mj − 1), where s = Mj
√
λα is an arbitrary but fixed choice of the root. Thus, the

splittings ω̃(n)j − ωj all have the same magnitude ∝ λ1/Mj and are equiangular. Both their

magnitude and the overall phase are determined by α. The eigenvectors of H̃0 are

f̃
(n)
j =

Mj−1∑
m=0

sme2πnmi/Mjfj,m. (6.5)

Since the higher-order pole has been split into first-order ones, their duals read simply

f̃
j

(n) = F f̃ (n)j . (6.6)

It remains to account for H̃ ′, using conventional perturbation theory, by evaluating its
matrix in the new basis. The validity of this procedure is not entirely trivial, since the
transformation from {fj,m} to {f̃ (n)j }, effected by Pmn = sme2πnmi/Mj , becomes singular if

λ → 0. For a justification, denote the old matrix elements as H̃ ′
nm = 〈f j,n|H̃ ′fj,m〉/〈f j,n|fj,n〉,

and evaluate the inverse transform (in fact a discrete Fourier inversion) as (P−1)mn =
M−1
j s−ne−2πnmi/Mj . In the basis diagonalizing H̃0, the perturbation then reads

〈f̃ j(n)|H̃ ′f̃ (m)j 〉
〈f̃ j(n)|f̃ (n)j 〉

=
Mj−1∑
k,0=0

(P−1)nkH̃
′
k0P0m

=
Mj−1∑
k,0=0

1

Mj

e2π(0m−nk)i/Mj H̃ ′
k0s

0−k. (6.7)

Crucially, the power s1−Mj does not occur since H̃ ′
Mj−1,0 = 0 on account of (6.1). Thus the

matrix elements of λH̃ ′ are O(sMj s2−Mj ), which means that the first-order frequency shifts
due to H̃ ′ are O(s2), small compared to the lowest-order splittings 'ω̃(n)j ∝ s. With ‘energy’

denominators ω̃(n)j − ω̃(m)j ∝ s, higher-order shifts are smaller still by successive powers14 of s.

Of course, inter-block matrix elements of H̃ ′ can be handled without difficulty.

6.2. Nongeneric case

If α = 0 the leading behaviour is determined by other matrix elements, and the splitting of ωj
can be partial or, depending on the scheme of calculation, occurs only in higher order [18]. We

14 In fact, this last statement on the smallness of higher-order corrections is the more relevant one. Namely, the
textbook formula for the lowest-order wavefunction correction already has an energy denominator, unlike for the
frequency shift. Hence, the contribution of H̃ ′ is O(s), so that the lowest order is not given by (6.5) alone, in contrast
to (6.4). (However, the part of the O(s)-correction not due to H ′

s is ∝ fj , and thus can be absorbed into a change
of normalization.) Still, after the transformation (6.5), one obtains a well-defined perturbation expansion also for the
QNM wavefunctions.
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shall not investigate the general case, but instead give an example relevant to the discussion in
appendix A. Namely, if a 4 × 4 Jordan block is perturbed by

H ′ =




0 0 0 0
α 0 0 0
0 0 0 0
0 0 α 0


 (6.8)

(in the normal-form basis {fj,n}), one finds det(H − ω1I) = [(ω − ωj)
2 − λα]2. Thus, the

fourth-order pole is split into two second-order ones, and the latter do not undergo further
splitting to any order. Of course, this treatment does not address the question whether for
some δρ the perturbation H ′ can have the form (6.8) for the open system (2.1), even if a
fourth-order pole is assumed to exist. However,H ′ as in (6.8) at least satisfies the fundamental
〈f j,n|H ′fj,m〉 = 〈f j,Mj−1−m|H ′fj,Mj−1−n〉 (i.e., reflection symmetry with respect to the NE–
SW diagonal within one block), which follows from (2.17) and (5.7).

6.3. Example

Returning to the example (3.5) of section 3.2, and bearing in mind the NHH action (2.4) on a
two-component vector15, we study the perturbation ρ−1(x) �→ ρ−1(x) + λθ(1 − x).

From its definition (6.2), and using (5.16) for the normalization, one obtains

α = 1
2 (K tanhK − sinh2 K). (6.9)

If λ > 0 the frequency shifts ±√
λα are purely imaginary, while for λ < 0 they are real.

That is, as λ is turned from positive through zero to negative values, the complex poles move
together horizontally, merge, and then move apart vertically; cf section 3.1.

Proceeding to O(λ), conventional QNM perturbation theory [15] gives the coefficients of
the shift as 〈f̃ 0

(0)|H̃ ′f̃ (0)0 〉/〈f̃ 0
(0)|f̃ (0)0 〉 and 〈f̃ 0

(1)|H̃ ′f̃ (1)0 〉/〈f̃ 0
(1)|f̃ (1)0 〉, respectively9. Using (6.7),

both are evaluated as 1
2 (H

′
00 +H ′

11)+O(
√
λ) = H ′

00 +O(
√
λ), where the last step follows from

the symmetry pointed out below (6.8). In the numerator of

H ′
00 = (f0,1, H

′f0)

(f0,1, f0)
(6.10)

the contribution of fb as in (5.15c) (i.e., the term found only by proper bi-orthogonalization
which does not contribute to the denominator in (6.10), cf below (5.16)) is seen to be ∝ α

upon comparison with (6.2). For both split levels the next-order shift thus reads

λH ′
00 = λ

[
(fa,H

′f0)

(f0,1, f0)
− i

(
2

3

K

γ
+

1

2K

)
tanh(K)α

]

= i
λ

γ

(
K

4
tanhK − K

6

sinh3 K

coshK
− K2

4
− K2

12
tanh2 K

)
(6.11)

and is imaginary, so that if the double pole is split along the imaginary axis in O(λ1/2) the
QNMs stay on this axis up to O(λ), again consistent with the argument of section 3.1.

For a check, the perturbed QNMs can be also found directly from (2.2) together with the
boundary conditions. For a constant ρ ′(0<x<a)−1 = γ 2/K2 + λ, the eigenvalue equation is

i −
√
ρ ′cotan(

√
ρ ′ω) = −ω K2

γ 2 sinh2 K
(6.12)

15 Strictly speaking, ρ−1 is undefined if ρ contains a δ-function as in (3.5c). This can be dealt with as a limiting case
of regular ρ. To be sure, no problems arise here.
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in which we set
√
ρ ′ = K/γ−(K3/2γ 3)λ+O(λ2) andω = −iγ +ω1

√
λ+ω2λ+ω3λ

3/2+O(λ2).
In O(λ0) and O(

√
λ), (6.12) is satisfied identically. In O(λ) one obtains ω2

1 = α, with α as
in (6.9); in O(λ3/2) one obtains ω2 = H ′

00, withH ′
00 as in (6.11). Hence, the Jordan-block BB

formalism of section 6.1 agrees with direct expansion of the wave equation.
Finally, non-generic perturbations are illustrated by K �→ K ′ = K + λ in (3.5c), namely

by δρ = ∂Kρ (in the differentiation of ρ, its K-dependence through γ as in (3.5b) must also
be taken into account). In the lowest order, H ′ shifts the double pole corresponding to K to
a double pole for K ′, and indeed one finds

∫ 1+

0 δρf 2
0 dx = 0, as stipulated below (6.3). Since

beyond this leading orderH0(K)+λH ′ �= H0(K
′), the double pole will be split eventually. In

line with section 6.1, however, this is not pursued here.

7. Conclusion

A remark is in place concerning the relevance of the issue considered. The preceding and
especially section 6 make clear that non-trivial Jordan blocks occur only on a set of measure
zero in parameter space. However, this feature is shared with, e.g., stationary points in the phase
space of dynamical systems, critical points in phase diagrams (note the semantic coincidence
with ‘critical damping’), and degeneracies in conservative quantum systems. All of these are
worthy of study and to a remarkably large extent determine the global structure of the parameter
space. For degenerate quantum levels, a further motivation is their relation to symmetry. While
no analogue has shown up here, two modes can merge in a spatially symmetric open wave
system’s superpartner [31].

The existence questions raised in section 3 and appendix A are related to spectral inversion.
In the closed case, the classic inverse problem [32] is to determine the system (ρ(x) for the
wave equation orV (x) for the Klein–Gordon equation) given all real eigenfrequenciesωj . The
counterpart for open systems is to find ρ or V from the complex ωj or, more generally, from
the singularities of G̃(ω). If, e.g., G̃ is specified to have a pole of order Mj = 4 at ωj , does
a corresponding ρ or V exist (at least for one in a class of such singularity configurations)?
Assuming the general inverse problem for open systems (a topic for further research) to be
tractable, at this stage the following scenarios are conceivable.

(i) The inversion algorithm indeed yields a ρ with, say, a fourth-order pole or a pair of off-axis
double poles in its spectrum.

(ii) The inverse problem turns out to have no solutions, yielding a non-trivial proof of the
non-existence of such configurations.

(iii) This particular set of singularities points to limitations in the inversion algorithm which
otherwise might have been overlooked.

Any of these would further the understanding of QNMs in open wave systems.
As mentioned in section 1, for the case of simple poles we have second-quantized the open

wave system (2.1) using QNMs [13]. The expansion coefficients aj (cf (2.12)) emerge as the
pertinent quantum degrees of freedom, in terms of which it is possible to eliminate the outside
from the equations for the cavity evolution. This relevance to the quantum problem further
motivates studying the mode structure of (2.1). The present groundwork indeed facilitates
second quantization even when this structure involves non-trivial Jordan blocks, either by
Hilbert-space methods or by exactly solving the associated path integral [14].

In closing, it may be useful to place this paper into the following context. Many wave
phenomena obey an evolution equation i∂tφ = Hφ (see above (2.4)) and a logical question
is: what are the possible forms for H—leading to various dynamics for φ—and how are
these exemplified in nature? The most familiar are conservative systems, for which φ is
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expandable in a complete normal-mode basis, diagonalizing H , with real eigenvalues. Our
earlier work [9,12] shows another realization: in a large class of outgoing-wave systems, φ is
again expandable in a complete basis (of QNMs) in terms of which H again is diagonal, but
with complex eigenvalues. The QNMs, however, are not orthogonal under the standard inner
product. Therefore it is convenient to introduce their duals as well; together these constitute
a BB. This paper has identified and studied a further generalization pertaining to such open
wave systems, for which H is not diagonalizable. In these circumstances we have shown that
a well-defined Jordan-block structure emerges, involving a non-trivial duality operator.
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Appendix A. Third-order poles and beyond

At present, it is not known whether higher-order poles can exist off the imaginary axis, cf
section 3.1. The analogy to damped harmonic oscillators suggests that they cannot, but this
does not lead to a proof directly since the oscillator picture itself is contingent on the QNM
spectrum being simple, with at most a double-pole zero-mode. In fact, at the end of section 3.2
it was pointed out that the analogy is imperfect, and also intuition based on the conservative
and WKB limits could bias one against more exotic possibilities.

A possible strategy for looking for off-axis double poles is to first construct a fourth-order
zero-mode, which under a suitable non-generic perturbation could be split into a pair of such
double poles, cf section 6.2. Thus returning to the case ω = −iγ , (5.13) shows that for a
fourth-order pole one needs9 (f0, f0,1) = (f0,1, f0,1) = 0. Expanding f0,1 by its integral
representation11, using (4.4) for its momentum, and eliminating ρ and γ by (3.1) and (3.3)
respectively, one arrives at two functional equations for16 f0 = f

γ 2W0,2 = 4
∫ 1

0

dx

f 2(x)

[ ∫ x

0
dy f ′′(y)f (y)

]2

−
∫ 1

0
(f ′)2 dx = 0 (A.1)

iγ 3W0,3 = 8
∫ 1

0
dx f ′′(x)f (x)

[ ∫ 1

x

dy

f 2(y)

∫ y

0
dz f ′′(z)f (z)

]2

−4
∫ 1

0

dx

f 2(x)

[ ∫ x

0
dy f ′′(y)f (y)

]2

= 0 (A.2)

where a ≡ 1 without loss of generality; (A.1) alone yields a third-order pole. Solutions are to
be sought among the f satisfying conditions (a) below (3.3) and the inequality (3.4).

Up to now we have only studied third-order poles, seeking f obeying (A.1) and
subsequently constructing ρ using (3.1). We have considered f (x) = x + αxn (n > 2),
cf below (3.4)17. One hasW0,2 < 0 both for small and for large α: (a) for small α, f ′′ ≈ 0 so
that the second term in (A.1) dominates; (b) for large α, one can neglect the linear term to find
that γ 2W0,2 = −α2n2(4n − 3)/(2n − 1)3 < 0. However, there exist n for which W0,2 > 0
if α ∈ (α1, α2)—so W0,2 = 0 at α1 and at α2—e.g., (α1, α2) = (2.059, 3.8209) for n = 5,
and (α1, α2) = (1.063 096, 8.309 08) for n = 6. In both cases, (3.4) is violated at α1 but

16 In further numerical work, one should circumvent the time-consuming multiple integrals in (A.1) and (A.2).
For instance, p = 4

∫ 1
0 dx f−2(x)[

∫ x
0 dy f ′′(y)f (y)]2 is the solution p(1) of the system {(p, q)′ =

(4q2/f 2, f ′′f ), (p(0), q(0)) = (0, 0)}.
17 In this example, ρ(x) → 0 if x → 0 and n > 3, but this can always be remedied by adding a small positive x3

term and adjusting α accordingly.
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satisfied at α2, implying that third-order poles indeed do exist. Besides being a stepping-stone
in the search for fourth-order (and hence off-axis) poles, this result in itself already justifies
the general (i.e., not limited to Mj � 2) setup in sections 4–6.

Appendix B. Constructing dual bases

In section 5, one needs to determine the basis dual to {fj,n}Mj−1
n=0 . There is a standard result for

finite-dimensional spaces [16], which, however, applies for a dual basis constructed within
the space spanned by the original one. Here we are concerned with the original space
V = L[{fj,n}Mj−1

n=0 ] (L is the linear span), but with the dual basis in a different space W .
Therefore we are led to the following problem. Let V be anM-dimensional subspace of a

Hilbert space with basis {vn}M−1
n=0 , and let W be another M-dimensional subspace of the same

Hilbert space. Under what conditions will there be a dual basis {wn} in W , in the sense that
〈wm|vn〉 = δmn? We claim that the necessary and sufficient condition is

W ∩ V ⊥ = {0} (B.1)

where V ⊥ is the orthogonal complement to V . (For example, if the whole Hilbert space is
three dimensional, and if V is the x–y plane, then W must not contain the z-axis.)

For a proof, let {wn} be any basis for W . The duality of {wn} and {vn} is equivalent to
 〈w0|v0〉 · · · 〈w0|vM−1〉

...
...

〈wM−1|v0〉 · · · 〈wM−1|vM−1〉




 w0

...

wM−1


 =


 w0

...

wM−1


 . (B.2)

The solvability condition is that the metric matrix on the LHS be non-singular. Singularity
would mean that a non-trivial linear superposition w of the wm (i.e., a non-zero vector in W )
is perpendicular to all vn, i.e., that w ∈ V ⊥. This simple calculation not only proves our
assertion, but also gives a constructive algorithm.

Returning to the outgoing-wave system of the main text, the contour-integral calculation
there in effect shows that (B.1) is indeed satisfied for Vj = L[{fj,n}Mj−1

n=0 ] andWj = FVj with
F as in (2.14), solves (B.2) for that case, and extends this bi-orthogonalization to the whole
space by showing that the latter equals ⊕jVj , with (4.6) holding between different blocks.
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